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Abstract

Two methods for linear electroelastic analysis are presented, both supported by a variational formulation of hybrid
type for stresses. In the first formulation, the field variables are stress and density of electric flux, and mechanical and
electrical equilibria are satisfied a priori in the field. In the second formulation, the field variables are stress and electric
potential, and mechanical equilibrium and electrical compatibility are satisfied a priori in the field. In both cases, the
remaining field and boundary conditions are met weakly. Two finite element models are developed and their perfor-
mance is examined and compared with the one of the compatible finite element approach in some test cases reported in
the literature. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The electroelastic behavior of materials is a topic of specific interest in solid mechanics as well as in
structural engineering. Indeed, the state variables of mechanical and electrical nature are coupled in the
constitutive law of an electroelastic body, since an electric field produces a deformation (electrostrictive effect)
as well as a deformation a polarization state affects (piezoelectric effect) — see for example Eringen and
Maugin (1990) and Ikeda (1996). In other words, an energy transfer takes place from electrical to mechanical
energy, and vice versa. This feature makes an electroelastic structure able to adapt depending on the electrical
or mechanical operating conditions, and several displays as control moduli (e.g. Gandhi and Thompson,
1992), piezoelectric motors (Carotenuto et al., 1998), etc. can be built by employing electroelastic materials.

Due to the theoretical and applicative aspects mentioned above, a continuative attention is devoted to
electroelasticity problems in literature, both in formulating suited structural models and related methods of
solutions (recent contributions are by Nicotra (1998), dell’Isola and Vidoli (1998), Nicotra and Podio
Guidugli (1998) and Vidoli and Batra (1998)) and in implementing exact, analytical solutions for spe-
cific problems (see in particular Ray et al. (1992, 1993), Heyliger (1994), Bisegna and Maceri (1996),
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Kapuria et al. (1997) and Heyliger (1997)). These solutions are of interest to assess the accuracy of ap-
proximate methods of analysis, which are needed for solving most of the actual problems. Nevertheless,
numerical solutions can also be suitable for benchmark comparisons.

In the above direction, a variational formulation of the problem can be of interest not only as a formal
contribution, but also as a consistent support for developing a general and convenient method of analysis.
A variational principle for linear electroelasticity necessarily recalls an analogous principle in elasticity.
Indeed, the variational principle in displacement and electric potential presented earlier in the literature by
Tiersten (1967, 1969), EerNisse (1967) and Holland and EerNisse (1968) is similar to Hamilton’s principle
and, of course, to the one of minimum potential energy. Four variational principles, corresponding to the
four versions of the electroelastic energy were outlined by Zhang (1985). Each principle involves as vari-
ables, a function chosen between displacement and stress, and a function chosen between electric potential
and electric flux density. In each principle, the variables fulfill the relevant equations of the boundary value
problem as essential conditions. The extension of the Hu—Washizu and Hellinger—Reissner mixed principles
is due to Yang (1992), for both static and dynamic cases. Finally, a long list of functionals for variational
statements is given by Bisegna and Maceri (1998). On the side of the numerical solution procedures, the
compatible finite element approach, i.e. the approach based on displacement and electric potential inter-
polation, seems to be universally followed — see the early papers of Allik and Hughes (1970) and Oden and
Kelley (1971), the more recent paper of Lerch (1990), and the papers of Lee and Saravanos (1997) and
Wang et al. (1999) for a comprehensive list of references. Recently, a different approach which anticipates
some contents of this paper has been proposed by the authors (Cannarozzi and Ubertini, 1999).

In this paper, two distinct variational versions of the electroelasticity problem are exposed. Both are
related to the minimum, modified complementary energy principle for the elastic part. In the first version,
the field variables are stress and electric flux density. Mechanical equilibrium and electrical equilibrium are
fulfilled a priori in the field, and compatibility and boundary conditions are met weakly. In the second
version, the field variables are stress and electric potential, mechanical equilibrium and electrical com-
patibility are fulfilled a priori in the field, and the other field and boundary conditions are met weakly. The
exposition is done with regard to a three-dimensional body for the sake of generality and because a three-
dimensional description is often required for practical transducer applications, but the specialization to
whatever structural model is obviously possible. Each formulation supports a finite element method of
analysis where the elastic part is of hybrid type for stress (Pian, 1973), while the electrical part is of hybrid
type for electric flux density in the first formulation, and of compatible type in the second one. The first
method involves stress and electric flux density as variables in the element, and displacement and electric
potential at the interelement, hence it allows direct evaluation and control for all the quantities of the
problem. The second method is rather an improvement of the standard, compatible approach for what
concerns stress analysis. In both cases, the greater computational burden seems to be rewarded by a su-
perior overall accuracy in the results.

Passing to the details of the exposition, in Section 2 the energy functions at the basis of the two methods
and the related constitutive equations are deduced, and the equilibrium and compatibility equations of the
problem are recalled. The variational formulations involved are exposed in Section 3, and the related
models are developed and discussed in Section 4, together with the finite element implementation. Some
numerical tests are presented in Section 5 and the performances of the proposed approaches is accounted
for. Some final considerations end the paper.

2. Governing equations

Reference is made to a body which occupies the closed and bounded domain B of the euclidean three-
dimensional point space &. The vector space associated to & is denoted by 77, {e;} = {e|,es, €3} is an
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orthonormal basis of #7, and (o0;e;,e,,e;) is a cartesian reference frame for &, with origin 0. The com-
ponents of a vector v € ¥~ with respect to the assumed basis are denoted by {v;} and the coordinates of a
point x of & are denoted by {x;} —i = 1,...,3. The inner part of B is denoted by B and its boundary by 0B,
BUOB = B. The measure of Bis V and the measure of 0B is S.

The variables which describe the state of the body are the displacement vector u and the electric potential
¢, functions of x in B, the symmetric strain tensor E and stress tensor S, the electric field vector e and the
electric flux density vector d, functions of x in B. Traction and electric flux density through a surfacic el-
ement of unit normal vector n are denoted by t, t = Sn, and d, d = d - n, respectively. The domain B is
admitted to assume outward normal vector almost everywhere on 0B.

The distributed load b and the distributed electric charge y are prescribed in B. The boundary 0B is
split into four parts: 0B,, 0B, and 0By, 0B,, such that 0B, U0B; = 0By U0B,; = 0B, 0B, N0B, =
0B, N OB, = (0. The values u and t are prescribed for displacement u on 0B, and traction t on 0B, re-
spectively, and the values ¢ and d are prescribed for the electric potential ¢ on dB; and for the density of
electric charge on 0By, respectively. All these quantities are assumed to be independent of time (electrostatic
problem).

The context of the linear theory of electroelasticity is adopted (Eringen and Maugin, 1990). The state of
the body is governed by the following relationships.

Constitutive equations. Due to the presence of the four inner variables: E, S, e and d, four equivalent
versions of the electroelastic constitutive equations are possible depending on the choice of the independent
variables (see in particular Berlincourt et al. (1964) and Ikeda (1996)). Each version can be derived from a
specific state function.

The constitutive equations in terms of strain and electric field are derived from the electric enthalpy
function

¢(E,e) =1CE-E — ke -e¢ — cE - ¢, (1)
and read

S =3¢ /0E = CE — c'e, (2)

d = —0¢/0e = cE + ke, (3)

where C is the fourth-order tensor of elastic stiffness at constant electric field, k is the second-order per-
mittivity tensor at constant strain, and ¢ is the third-order electroelastic coupling tensor, all independent of
E and e. Tensors C and k are symmetric and positive definite, and tensor ¢ is such that the product c'a is a
second-order symmetric tensor for each vector a, being ¢' the transpose of ¢ defined by A - ¢'a = cA - a, with
A second-order symmetric tensor.

The Legendre transformation (Sewell, 1987) of ¢ with all the variables active is the mechanical enthalpy
function

7(S,d) = ¢ —E-S—e-d='HS-S+1Xd-d—hS-d, (4)

and the related constitutive equations read
E = —0n/0S = HS + h'd, (5)
e =0n/0d = —hS + Xd, (6)

where
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H=(C+ck'e)', h=k'eH  X=k'—k'cHck" (7)

The electroelastic moduli of this version seem better suited to be obtained through direct measurements
(Berlincourt et al., 1964). In this case, the moduli for the other versions are derived in turn.
The Legendre transformation of ¢ with variables E and S active is the enthalpy function

Y(S,e)=¢p—E-S=—-IHS-S—1k'e-e—hS-e (8)
with the subsequent constitutive equations

E = —0y/dS = H°S + gle, 9)

d = —-0y/0e = gS +K'e, (10)
where

H=C' g=cC' K =k+cC'c. (11)

Tensors H, X, H® and k’ are positive definite and tensors h and g have the same property of c.
Functions n and  are directly involved in this work.
Compatibility equations. The strain—displacement and electric field—electric potential relationships, and
the relevant boundary conditions are

E = symgradu in B, (12)
e=—grad¢ in B, (13)
u=u ondB, (14)
¢ =¢ on By (15)

Equilibrium equations. The mechanical and electrical balance equations are
divS+b=0 in B, (
divd—y=0 inB, (17
Sn=t on 3B, (
d-n=—-d ondB,. (

The differential operators above are related via the bilinear (Gauss—Green) identities

/v-dideV: —/W-symgradvdV+ v- WndS, (20)
B B J OB

/vdivde:—/W-gradvdV+/ on-wds, (21)
B B 0B

where v is a function of x, and v, w and W are two vectors and a symmetric tensor of sufficiently regular
functions of x.

3. Variational formulation

Two variational formulations are given. The first one is based on the mechanical enthalpy function (4).
As the inner variables meet a priori mechanical and electrical equilibrium in B, and weakly the other
conditions, this formulation is referred to as fully hybrid formulation. The second one is based on the
enthalpy function (8) and the inner variables meet a priori mechanical equilibrium and electrical com-
patibility in B, thus it is referred to as hybrid stress formulation (Pian, 1973).
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3.1. Fully hybrid formulation

A variational counterpart of the problem described in the previous Section is based on the functional
(Cannarozzi and Ubertini, 1999)

H(s,d,u,¢)=/n(s,d)dV+/ (Sn—f)-ud5+/

B 0By 0By

Sn-ﬁds+/ (d-n+d)¢pdS

0By

+/ d-n¢ds, (22)
3By

concave in S and convex in d, see Eq. (4). The domain of functional IT is the cartesian product of the sets of
functions S and d which satisfy equilibrium conditions (16) and (17) in B, respectively, and of the sets of
functions u and ¢ which are continuous on 0B, and 0B, respectively. The first variation of II yields

817:/(—HS-E)S—htd-8S+Xd-5d—hS-5d)dV+/ u-SSndS—i—/ u-0SndS
B 0B 0By

0B, 0By

+/ d)n-6ddS+/ q@n'deS+/ (Sn—f)~6udS+/ (d-n+d)dpds, (23)
: 0B, )

where the variations 6S and dd are submitted to the equilibrium conditions in the homogeneous form:

divdS =0, (24)
divdd = 0. (25)

Let v denote a vector of functions of x, and v a function of x. The term

—/diVSS-vdV—/vdidedV7
B

B

which is identically null, is added to functional 8II, and the application of identities (20) and (21), for
sufficiently regular functions S, d, u, ¢, v and v, yields

3T = / [(symgradv — HS — h'd) - 8S + (gradv — hS + Xd) - 3d]dV —/ (v —u) - 3SndS
B OBy

—/ (v—ﬁ)~BSndS—/ (v—q’))n-deS—/ (v—¢>)n-8ddS—|—/ (Sn —t) - dudS
o, B, 0B, o,
+/ (d-n+d)5¢ds. (26)
a8,
The variational equation
SIT=0 Y(3S,5d,5u,5p) (27)

generates the necessary and sufficient stationary conditions for functional IT on the set of functions S and d
which fulfill Egs. (16) and (17):
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symgradv —HS —h'd=0 in B, (28)
gradv—hS+Xd=0 in B, (29)
v—u=0 on 0B, (30)
Sn—t=0 on 3B, (31)
v—u=0 ondB, (32)
v—¢ =0 on 0By, (33)
d-n+d=0 ondB, (34)
v—¢ =0 on 0B,. (35)

It follows from the above equations that if IT is stationary there exists a vector v which identifies with
displacement u, and a function v which identifies with potential ¢, so that the compatibility equations and
the equilibrium equations (18) and (19) are fulfilled. Hence, the point of stationary of functional IT cor-
responds to the solution of the electroelastic problem. The exposed formulation can be alternatively derived
from the mixed principle of Hellinger—Reissner’s type presented by Yang (1992).

The requirements of regularity for functions S and d can be relaxed on a finite number of interfaces in B
for finite element expansions. Domain B is subdivided into E non-overlapping open subdomains B,,
e =1,..., E, with boundary 0B,, B, = B, U 0B,, U.B, = B. The intersection, if any, between 0B, and a part of
0B is denoted by 0B, 0By, 0B, 0B, according to the relevant part of dB. The interdomain between two
subdomains is denoted by g;, j = 1, ..., m. Displacement u and potential ¢ are assumed to be continuous on
the interdomain, whereas continuity of tractions and electric flux density through the interface of two

contiguous subdomains, (Sn)j+ and (d - n)j, (Sm); and (d - n),, is relaxed. Hence, functional (22) becomes

I)(S,d,u,¢) = Z

e

/n(s,d)dV+/ (Sn—f)-uds+/ Sn-adS
B OB, 0B,

e IDse IDye

+/ (d~n+c7)¢dS+/ d.n¢dgl
+Z /o[(Sn)f%-(Sn)j_] .udS+Z /g‘[(d‘“)jﬁ‘(d'n)j_]d)dS. (36)

With the same algebra used above, it is possible to realize that the stationary conditions of functional (36)
are: the same stationary conditions of Eq. (22) for the typical subdomain, and the identification of functions
v and v with displacement u and electric potential ¢, respectively, for the typical interface, together with the
transitional conditions on traction and electric flux

(Sn); +(Sm); =0, (d-n); +(d-n); =0 at g, j=1,..,m. (37)

3.2. Hybrid stress formulation

The electric field e is eliminated between Egs. (8) and (13) and the function
¥4(S,¢) = —HS - S — Jk’grad ¢ - grad ¢ + gS - grad ¢ (38)

is obtained. Consider the functional
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?’(S,u,q&,d):/tp¢(S,¢)dV+/y¢dV+/ (Sn— 1) -uds +

0By 0By

+ /63 d(¢ — $)ds, (39)

Sn- ﬁdS+/ d¢pds

0By

jointly concave in S and d, see Eq. (8). The domain of functional ¥ is the cartesian product of the sets of
functions S which satisfy equilibrium condition (16) and functions ¢ which satisfy compatibility condition
(13), and of the sets of functions u and d continuous on 0B, and 0B, respectively. The first variation of
¥ reads as

6'1’:/(—H"S-SS+gSS~grad¢—ksgrad¢-grad6¢+gS-grad8¢)dV+/y6q§dV
B B

+/ (Sn—f).e‘md5+/ u-SSndS+/ ﬁ-SSndS—i—/ a5¢ds+/ (¢—q§)6dds
0B, 0B, 2 0By A

u

T / dd¢ds, (40)
0B,

where the variation 8S is subjected to the constraint divdS = 0. Let v denote a vector of functions of x. The
identically null term

—/diVSS-vdV
B

is added to functional 8%, and applying identities (20) and (21) for sufficiently regular functions S, d, u,
¢ and v leads to

dY = / {(symgradv — H°S + g'grad ¢) - 8S + [div(k’grad ¢) — gS + 7|84 }dV
B

_/BB(V_H).BSHds+/ (Sn—f)-z‘mdS—/ (v—u) - dSnds

0B 0By

+ /asd[a —n-(gS +k‘Ygrad¢)]8¢dS+[

0By

d—n- (gS—&—kxgradqb)]qudS—/ (6 — $)5ddS.

o8,
(41)
The variational equation
3 =0 V(3S,du,d¢,dd) (42)
yields the necessary and sufficient stationary conditions for functional ¥ on the set of functions S fulfilling
Eq. (16) and of functions ¢ differentiable in B:
symgradv — H’S + g'grad¢p =0 in B,
div(k’grad¢) —gS+y=0 in B,
v—u=0 on 0B,
Sn—t=0 on 0B,
v—u=0 ondB,
n-(gS+k'gradg) —d=0 on 0By,
$—¢=0 ondB,,
n-(gS+k'gradg) —d =0 on 0B,.

[ S N S T S~ SN
S O o0 O N L b~ W
NN N NI I SN N2
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It appears from Eqgs. (43), (45) and (47) that if ¥ is stationary there exists a vector v which identifies with
displacement u so that the compatibility conditions (12) and (14) are fulfilled. In addition, boundary
compatibility for ¢ and equilibrium conditions (17)—(19), with d expressed through Egs. (10) and (13), are
also fulfilled. Moreover, Eq. (50) defines the density of electric flux through 0B,. It follows that the sta-
tionary point of functional ¥ corresponds to the solution of the electroelastic problem.

The requirements of regularity for functions S and ¢ can be relaxed on a finite number of interfaces in B
for finite element expansions, as in the previous case. With the notation of the previous Section, dis-
placement u is assumed to be continuous on the typical interdomain, and electric potential ¢ is assumed to
be differentiable on B, and continuous on the interdomain, whereas continuity of tractions through the
interface between two contiguous subdomains, (Sn)j+ and (Sn); , is relaxed. Hence, functional (39) becomes

&'/D(S,d,qs,d)_Z[/B ¢¢(s,¢)dV+L y¢dV+/ (Sn—t)-udS+ [ Sn-uds

0Bye 0Bye

+/aBded¢dS+/ d(¢ — ¢)dS

0B de

+ Z /Q ‘[(Sn)j* +(Sm);] - uds. (51)

It is a matter of routine to realize that the stationary of functional (51) yields the same stationary conditions
of functional (41) for the typical subdomain and the identification of function v with displacement u for the
typical interface, together with the transitional conditions:

(Sn)j— + (Sn)j_ = 07 at Qj, ] = 1, e, m. (52)

4. Hybrid models and finite element implementation

Both the formulations presented above allow to implement a model and a finite element method of
analysis. The model related to the first formulation is referred to as fully hybrid model, the one related to
the second formulation as hybrid stress model.

4.1. Fully hybrid model

Functional (22) for the single element is written in the synthetic form

I1,(S,d,u, ¢) :/ n(s,d)dV+/ (Sn—1t) ~udS+/ (d-n+d)¢pds, (53)
Be 3B, 0B,

where t and d are the traction and the electric flux density applied on 0B,, respectively. Note that if a part of
0B, lies on 0B, or 0B, then t and d should be specialized according to the prescribed conditions for forces or
electric charges, respectively.

Both the stress and the electric flux density in each element are divided into two parts. The first part of
each field is a particular solution of the relevant equilibrium equation, while the second part is required to
satisfy the relevant equilibrium equation in the homogeneous form. This is written as

S=S8,+Su, (54a)

d=d,+d,, (54b)

where
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divS, = —b, (55a)
divS, = 0, (55b)
divd, =, (56a)
divd, = 0. (56b)

The standard matrix—vector notation (Voigt, 1910) is employed for the subsequent expansions and the
previous relations are intended as adjusted in accordance. The two parts of stress and electric flux density
are expressed as

= Psﬂsv Sp = I_)Sﬁm (57)
do =P8, d,=P,p, (58)

where vectors Sy = {¢};} and S, = {a7} collect the independent stress tensor components, P, and P, are
matrices of basis functlons of x (1 e. of stress and electric flux modes), f5, and f, are the vectors of unknown
stress and electric flux parameters, matrices P, and P, are load and electric charge modes, functions of x,
and f, and B, are vectors of known coefficients. The null-divergence stress and electric flux density states,
Sy and dy, can be built up starting from six algebraic functions of x, say @’ = @¥(x) and & = &/(x),
i=1,2,3 — stress and stream functions, respectively. Here they are obtained in accordance with the fol-
lowing scheme:

011 = ‘p1/23v ng = (pg/l 3 ‘733 = (pa/lza (59)

‘712 <p§/3 3 ‘71% ‘I);/zzv ‘723 ‘pf/l 1 (60)

d? = gﬂf/z,sa dg = qﬁg/m, dg = ¢§/1‘27 (61)
under the constraints

<1')1/l +<D/2—|—<Pm =0, (62a)

D + P+ P =0, (62b)

where the symbol ;; denotes differentiation with respect to x;. It is easy to verify that both the above sets of
assumptions fulfill conditions (55b) and (56b), respectively. The stress function scheme adopted is due to
Zanaboni (1936).

The displacement and the electric potential along the element boundary 0B, are interpolated in terms of
nodal amplitudes q, and q,, respectively, in the form

u=VLgq,, (63a)

¢ = Lyq,, (63b)
where L, and L, are matrices of shape functions.

The stationary conditions of the function which results from substituting the above assumptions into Eq.

(53) yield the (mechanical and electrical) compatibility equations and the (force and electric charge)
equilibrium equations of the model. These equations can be written in a compact form as

0 -H, -H, G; 0 || B, g
0 . 7HI, d H, 0 G; ﬁd g4
h,| | G, 0 0 0 qu+ g | (6
h, 0 -G, 0 0|9 g5

where the expressions of all the matrices and vectors involved are given in Appendix A (I). Vectors h, and
h, are, by definition, the generalized nodal forces and nodal electric charges, respectively. Matrices H, and
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H, are symmetric and positive definite, and represent the elastic and electric compliance matrices of the
model, matrix H,,; accounts for the electroelastic coupling, and matrices G, and G, are the mechanical and
electrical load connection matrices, respectively. Vectors g, g,, g, and g4 collect known nodal values re-
sulting from the mechanical and electrical quantities prescribed over the element domain.

Solving the compatibility equations in terms of the inner parameters ff; and §, and substituting back into
Eq. (64) leads to the coupled relation between nodal forces/charges and nodal displacements/potentials:

h K K q f
u | u ) u u , 65
h, ’ Ky Ky || fy (65)

where K, is the stiffness matrix, K, is the dielectric matrix, and K, is the electroelastic coupling matrix of
the model. Vectors f, and f, collect the equivalent nodal forces and electric charges. Matrices K, and K, are
symmetric and positive semidefinite. All the matrices and vectors in Eq. (65) are defined in Appendix A (II).
The approximate solution of the discrete electroelastic problem is obtained by solving the linear alge-
braic system of equations which results from assembling Eq. (65) for all the elements and thereafter en-
forcing the boundary conditions on displacements and electric potential (Zienkiewicz and Taylor, 1989).

4.2. Hybrid stress model

Functional (38) for the typical element can be cast in the compact form

‘I’E(S,u,qb):/B ¢¢(s,¢)dv+/B y¢dV—|—/ (Sn—t)-udS+/ d ¢ ds, (66)

0B, 0B,

where traction t and electric flux density d should be specialized according to the prescribed boundary
conditions if 0B, lies on 0B, or 0B,.

As regards the assumptions on the mechanical variables, the guidelines outlined for the fully hybrid
model still hold. In particular, the stress field is split into two parts according to Egs. (54a) and (55a,b), and
the null-divergence part is obtained from three algebraic stress functions @ = &¥(x), i = 1,2, 3, via Egs.
(59), (60) and (62a). The interelement displacement is interpolated on 0B, by means of shape functions and
nodal amplitudes as indicated by Eq. (63a).

Unlike the previous model, the electric potential is defined over the element domain and is interpolated
in terms of nodal values as usual for the compatible approach (Allik and Hughes, 1970). In particular, it is
represented in the form of Eq. (63b), where the shape functions are defined on B..

The stationary of the function which results from substituting the above assumptions into Eq. (66) leads
to the mechanical compatibility equation and to the force and electric charge equilibrium equations of the
model. These equations can be cast in the compact form

0 -H, G, W, ||B| |s&
h,|=| G 0 0 ||q|+|8g]| (67)
h, Wy 0 W, flay] |8

where vectors h, and h, are (the definition of) the generalized nodal forces and nodal electric charges,
respectively, matrix W, accounts for the electroelastic coupling, and the known vectors g, g, and g,
account for the mechanical and electrical quantities prescribed over the element domain. Matrix H, and W
are symmetric and positive definite. All the matrices and vectors involved in Eq. (67) are defined in Ap-
pendix B (I).

Eliminating the stress parameters f, through the mechanical compatibility equation yields a system of
coupled equations formally analogous to Eq. (65). The expressions of the matrices and vectors involved are
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defined in Appendix B (II). Assembling all the elements and enforcing the boundary conditions on dis-
placements and electric potential are accomplished following the standard finite element procedure.

4.3. Implementation

The finite element implementation of the above models requires some considerations about stability and
invariance.

Stability is met if no spurious or zero energy modes arise, that is if both the stiffness and dielectric
matrices are rank sufficient (e.g. Brezzi and Fortin, 1991). For the fully hybrid model, the necessary con-
ditions for stability are

ng =n, — 6, (68a)
ng=ng—1, (68b)

where n,, n,, ns and n, are the number of parameters in the representation assumed for S, u, d and ¢,
respectively, 6 is the number of the element rigid body degrees of freedom, and 1 stands for the constant
electric potential distribution which is admitted with zero electric field. For the hybrid stress model, the
stability requirement reduces only to the condition (68a).

The above conditions state the minimum number of parameters, i.e. of stress and electric flux inde-
pendent modes for an assumed representation of displacement and electric potential. It is worthwhile to
underline that the number of the introduced modes should be as close as possible to the minimum. In fact,
the smaller the number of modes the lower is the computing cost for eliminating the relevant parameters at
the element level. Moreover, a large number of stress modes could lead to increased stiffness (Pian, 1973),
and analogous effect could occur for electric flux density.

An element should be invariant with respect to any coordinate change, so that the implementation is
independent of the reference coordinate frame adopted (Sze et al., 1992). This requirement is met if the
representations assumed for S and d (or only for S in the case of the hybrid stress model) are complete. In
fact, a complete polynomial basis does not change under a linear transformation of coordinates, i.e. by
changing the reference system. In the present context, invariance is met if complete functions @ and q§§’ are
assumed. Otherwise, invariance is retained only for the modes up to the maximum degree of completeness.

As regards the computational effort, both the hybrid models require the elimination of the inner pa-
rameters at the element level. Stress and electric flux parameters are to be eliminated in the fully hybrid
model, whereas only stress parameters are eliminated in the hybrid stress one. However, the higher com-
putational burden involved with respect to the standard displacement-potential finite element approach is
generally offset by the higher accuracy in the results, as the following numerical tests show.

5. Numerical tests

Four hexahedral isoparametric finite elements have been implemented following the guidelines exposed
in the previous section. Two elements, indicated by FH8 and FH20, are of fully hybrid type, and the other
two, indicated by HS8 and HS20, are of hybrid stress type. Element FHS is based on the eight-node scheme
(vertex nodes), where displacement and electric potential are represented on each face by bilinear shape
functions. The stress and the electric flux representations are obtained from complete quartic functions
&% and @¢. Element FH20 is based on the twenty-node scheme (vertex and midedge nodes), where dis-
placement and electric potential are represented on each face by quadratic serendipity shape functions. The
stress and the electric flux representations are obtained from complete quintic functions @7 and ¢?. The two
hybrid stress elements HS8 and HS20 have stress and displacement represented as in FH8 and FH20,
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Table 1

Elastic, electroelastic and dielectric moduli of ceramic PZT-5H
Cyy Cs3 Cp Cis Cy 3l €33 s ky k33
(GPa) (GPa) (GPa) (GPa) (GPa) (C/m?) (C/m?) (C/m?) (nF/m) (nF/m)
126.0 117.0 79.5 84.1 23.0 —6.5 23.3 17.0 15.0 13.0

respectively. The electric potential is interpolated by standard trilinear shape functions for HS8 (eight-node
scheme) and by triquadratic serendipity shape functions for HS20 (20-node scheme).

The performance of the above elements is compared with the one of standard, compatible eight-node
and 20-node hexahedral isoparametric elements, based on electric enthalpy as energy function, Eq. (1), i.e.
having displacement and electric potential as variables. The compatible elements are denoted by C8 and
C20, respectively. The Gaussian quadrature rule is used for both hybrid and compatible elements. In the
fully hybrid elements the integrals are evaluated exactly, while in the hybrid stress and compatible elements
the proper number of quadrature points for the exact integration in regular geometry is employed.

Reference is made to a transversely isotropic homogeneous square plate of edge L and thickness H,
made of piezoelectric ceramic PZT-5H (Bisegna and Maceri, 1996). The transverse isotropy axis is or-
thogonal to the midsurface of the plate. On the lateral faces of the plate, the tangential component of the
displacement and the electric potential are assumed to vanish. The values of the material constants (at room
temperature) are collected in Table 1, where C;, ¢;; and k;; are, in matrix notation, the coefficients of the
elastic, electroelastic and dielectric tensors, respectively.

Two different load cases are considered: a uniform normal surface force of intensity ¢/2 both on the
upper and on the lower face (Fig. 1(a)) and a uniform surface electric charge of density w on the upper face
and of density —w on the lower face (Fig. 1(b)). The plate shows a flexural behavior in the first case, and an
in-plane behavior in the second one. Both the cases are solved by uniformly increasing the in-plane dis-
cretization. Two and four eight-node elements, and one and two 20-node elements are used in the thickness
direction. The finite element solutions are compared with the results obtained from the three-dimensional
solution presented by Bisegna and Maceri (1996).

The relative percent errors in displacement u; and electric potential ¢, both of them evaluated at the
center of the plate, are plotted against the number of in-plane elements in Figs. 2 and 3, and the related
values are listed in Tables 2 and 3. Figures and tables refer to the first and the second load case, respectively,
and are obtained for the value H/L = 1/5 of the thickness-to-side ratio of the plate. The number of ele-
ments in x;-, x,- and x3-direction are denoted by n;, n, and n3, respectively.

The graphs show that the fully hybrid elements globally perform better than the hybrid stress elements
and the compatible ones with the same number of nodes. In fact, the error values in both displacement and

u,=0u;=0¢=0atx,=+L/2 u,=0u;=0¢=0atx,==xL/2
U, =0u;=0,¢6=0atx,=+L/2 U =0u;=0,¢6=0atx,=+L/2

(a) (b)

Fig. 1. Square plate in PZT-5H ceramic.
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Fig. 2. Case 1, H/L = 1/5: convergence tests in the center of the plate. Relative percent errors in: (a) displacement u; and (b) electric
potential ¢ for eight-node elements, (c) displacement u; and (d) electric potential ¢ for 20-node elements.

electric potential which result from the fully hybrid elements are the smallest for both the load cases. The
hybrid stress elements exhibit an intermediate performance between the compatible and fully hybrid ones.
Indeed, the error values resulting from the hybrid stress elements are closer to those of the fully hybrid
elements rather than to those of the compatible ones.

The results obtained using 20-node elements and a 4 x 4 x 2 element mesh are presented in detail for the
thick plate with thickness-to-side ratio equal to 2/5. In the case of surface forces prescribed, Fig. 4 shows the
normalized transversal displacement i3, electric potential ¢, in-plane normal stress ;; and in-plane electric
flux density d, in the thickness direction. In the case of surface electric charge prescribed, Fig. 5 shows the
normalized in-plane displacement i, electric potential ¢, in-plane normal stress 6,; and transversal electric
flux density ds in the thickness direction. The definitions of the dimensionless quantities plotted in both the
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Fig. 3. Case 2, H/L = 1/5: convergence tests in the center of the bottom surface. Relative percent errors in: (a) displacement u; and (b)
electric potential ¢ for eight-node elements, (c) displacement u; and (d) electric potential ¢ for 20-node elements.

figures are given in Appendix C. The graphs of normal stress and electric flux result from connecting with
straight lines the values obtained in five Gauss points and two boundary points for each element crossed by
the section line.

Inspecting the figures reveals the highest accuracy of the fully hybrid model in predicting both the
mechanical and the electrical quantities. In particular, notice that also the stress and the electric flux dis-
tributions are in good agreement with the reference solution for both the load cases (Fig. 4(c), (d) and
Fig. 5(c), (d)). As regards the hybrid stress model, it appears to be globally more accurate than the com-
patible one. In the case of the plate subjected to surface forces, the predictions of the hybrid stress ele-
ment are comparable with those of the fully hybrid one, even though slightly less accurate (Fig. 4). Notice
that the hybrid stress element shows near continuity of the normal stress across the interelement boundary
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Table 2
Case 1, H/L = 1/5: relative percent error in the central deflection and electric potential
Element Number of in-plane elements — n; X n
2x2 4 x4 6x6 8x8 10 x 10
FHS ny =2 i 44.182 6.433 —1.909 —3.576 —3.170
¢ —17.066 —10.469 —8.756 —8.554 —8.410
ny =4 i 46.831 13.331 4.806 1.638 0.237
¢ —13.403 —5.105 —3.372 —3.034 —2.894
FH20 ny =1 i 2.974 —0.069 —0.024 0.006 0.031
¢ -3.182 —1.464 —0.786 —0.556 —0.423
ny =2 i 2.839 0.125 0.142 0.133 0.125
¢ 5.702 0.229 —0.129 0.007 0.071
HS8 ny =2 i 43.745 4.752 —4.314 —6.388 —6.149
¢ —17.163 —10.817 —9.225 —8.849 —8.656
ny =4 i 46.740 13.030 4.404 1.168 —0.291
¢ —13.432 —5.190 —3.479 —-3.156 —-3.030
HS20 ny =1 U 3.330 —0.085 —0.042 —0.008 0.021
¢ —4.061 —1.470 —0.883 —0.646 —-0.516
ny =2 i 3.305 0.120 0.155 0.142 0.133
¢ 6.730 —0.540 —0.336 —0.126 —0.042
C8 ny =2 U 48.959 20.239 13.292 10.639 9.369
¢ —16.542 —10.033 —8.278 —8.035 —7.923
ny =4 U 48.029 16.930 9.114 6.112 4.663
¢ —13.120 —4.450 —2.752 —2.392 —2.257
C20 ny =1 U 7.478 2.075 1.923 1.905 1.905
¢ —6.349 —1.582 —0.969 —0.721 —0.562
ny =2 i 6.520 0.404 0.203 0.172 0.162
¢ 10.499 0.398 0.265 0.190 0.145

(Fig. 4(c)) as well as the fully hybrid one. In the case of the plate subjected to the surface electric charges, the
displacement and electric potential predictions of the hybrid stress element are comparable with those of the
compatible one, even though slightly more accurate (Fig. 5(a) and (b)). On the other hand, a higher accuracy
is obtained in determining the stress distribution (Fig. 5(c)). Finally, both the hybrid stress and the com-
patible elements show an apparently anomalous behavior in predicting the electric flux distribution (Fig.
5(d)). This fact depends on the relative coarseness of the 4 x 4 x 2 mesh, as well as the poor accuracy of C20
in the stress recovery (Fig. 5(c)). Indeed, using a mesh of four elements in the thickness and six by six ele-
ments in the plane leads to a qualitative behavior less far from the one of the reference solution, but yet less
accurate than the one of FH20 (Fig. 5(d)). The better qualitative results of the fully hybrid model in pre-
dicting the stress and the electric flux density can be interpreted based on the fact that both these variables are
directly represented in the model. The same holds for the hybrid stress model with regard to stresses.

The behavior of the hybrid models has been investigated also for other values of the thickness-to-side
ratio of the plate (Cannarozzi and Ubertini, 1999). In order to account for the performance of the hybrid
models for thin plates, it seems sufficient to present the results obtained for the value H/L = 1/10 of the
thickness-to-side ratio of the plate in Figs. 6 and 7. These results appear slightly less accurate than the ones
for H/L =2/5. Indeed, this is due to the fact that the same mesh is used for both the thickness-to-side
ratios, so that the element aspect ratio for H/L = 1/10 turns out to be quite severe. This provided, the
better behavior of the hybrid models in comparison with the compatible model experienced for all the cases
above is confirmed.
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Table 3
Case 2, H/L = 1/5: relative percent error in the deflection and electric potential at the center of the bottom face
Element Number of in-plane elements — n; X n
4 x4 6x6 8 x8 10 x 10
FH8 ny =2 i 0.825 —3.002 —0.308 —0.288
¢ 21.334 —1.301 0.845 0.201
ny =4 i 4.056 —1.634 —0.259 —0.157
¢ 18.807 0.165 0.291 0.135
FH20 ny =1 i —0.790 —0.451 —0.360 —0.156
¢ 1.423 —0.197 0.055 —0.039
ny =2 i 2911 0.325 —0.038 —0.078
¢ 0.716 —0.114 —-0.079 —0.027
HS8 ny =2 i 0.808 —3.125 —0.310 —0.290
¢ 21.427 —1.323 0.865 0.208
ny =4 i 3.982 —1.712 —0.269 —0.160
¢ 18.882 0.167 0.292 0.138
HS20 ny =1 i 1.946 —0.675 —0.392 —0.222
¢ 1.487 —0.252 0.107 —0.041
ny =2 i 2.149 0.065 —0.126 —0.134
0.965 —0.123 —0.086 —0.029
C8 ny =2 i —0.593 —3.313 —0.976 —0.654
¢ 22.027 —1.044 1.120 0.484
ny =4 U —0.795 —2.084 —0.904 —0.569
¢ 20.873 0.757 0.777 0.474
C20 ny =1 i 1.430 0.425 0.319 0.223
¢ —2.604 1.340 -0.177 0.054
ny =2 i 1.288 0.395 0.265 0.151
¢ —1.779 0.668 —1.121 0.032

The sensitivity of the hybrid models to element geometry distortions is investigated for H/L = 2/5 by
solving both the two load cases using different meshes with progressively distorted elements (Fig. 8). The
distortion is measured by the parameter d/L, which ranges from 0 to 0.375. For brevity, a comparison
among 20-node elements only has been included, but the conclusions which are drawn hold for eight-node
elements also. The normalized displacement i; and the normalized electric potential qAS are plotted versus the
distortion parameter in Fig. 9. The plotted quantities are evaluated at the center of the plate for the first load
case (Fig. 9(a) and (b)), and at the center of the lower face for the second load case (Fig. 9(c) and (d)).

As it can be observed, the fully hybrid element appears to be much less sensitive to element geometry
distortions than the compatible and the hybrid stress one. On this regard, notice that the hybrid stress
element seems to be globally less sensitive than the compatible one.

6. Concluding remarks

The two methods presented for the linear electroelastic analysis are alternative to the standard com-
patible approach, based on displacement and electric potential interpolation. In the outlined variational
framework, two finite element models are developed and a comprehensive guideline for their imple-
mentation is presented. Both the models perform better than the standard, compatible finite element model,
as shown in the numerical tests presented. The fully hybrid model appears to be the most accurate in
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predicting either displacement and stress or electric potential and flux density, and only slightly sensitive to
element geometry distortions. Thus, it seems the most reliable for electroelastic analysis. The hybrid stress
model shows an intermediate behavior between the fully hybrid and the compatible one. In particular, its
accuracy is generally comparable with the fully hybrid model in predicting the mechanical variables and
with the compatible model in predicting the electrical ones. Thus, it appears more effective than the

compatible approach and generally reliable for electroelastic analysis when the mechanical part is of pri-
mary importance.
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Appendix A. Fully hybrid model

(I) In matrix notation, tensor H is represented by a 6 x 6 matrix, tensor X by a 3 x 3 matrix and tensor h
by a 3 x 6 matrix. The expressions of matrices and vectors in Eq. (64) are

HS:/ P'HP,dV, Hd:/ PLXP,dV, Hsd:/ P'h'P,dV,
B, B. B,

G = | LINPdS, G,= / Lin'P,ds,
B

0B, e

&= [ PHPOVE -~ [ PWPAV, g - [ LINPSH,
Be Be 0B,

g~ [ PXPrp, -~ [ PhRarS, g —— [ LinPidsp,
B, B, 0B,

hu:/ L'tds, h¢:/ Lidds,
0B, 0B,

e

where N is the matrix containing the direction cosines of the outward normal to 0B,, and superscript (t)
denotes the matrix and vector transpose.
(IT) The expressions of matrices and vectors in Eq. (65) are

K,=GM''G!, K,=G,(H,' —-H,'H,,M 'H,H,")G],
K. = G;H,'H,;M'G.,

f, = g, + GSM_I (gs - HsdHJIgd)»
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fy = 8 — GdHt;l [(I - H;dM_ledH;l)gd + szM_lgs]a
where

M = (H, + H,H,'H,).

Appendix B. Hybrid stress model

(I) In matrix notation, tensor H° is represented by a 6 x 6 matrix, tensor k* by a 3 x 3 matrix and tensor
g by a 3 x 6 matrix. The expressions of matrices and vectors in Eq. (67) are
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H, = / PHP,dV, G,= [ LNP,dS, g=- / P'H'P,dV j,,
Be B

0B,

W¢:/ (grad L)'k’ (grad Ly ) dV, WS¢:/ (gradLy)'gP,dV,
B. 5

e

g=— [ L@ - [ (gadLy)gPavh,  g= [ LNPAVE,
Be Be

0B,

h, :/ L!tds, h, :/ prddS,
0B, 0B,
where N is the matrix containing the direction cosines of the outward normal to 0B,, and the superscript (t)

denotes the matrix and vector transpose.
(IT) The expressions of matrices and vectors resulting from the hybrid stress model in Eq. (65) are

K,=GH'G,, K,=W;,-WH'W,  K,;=W,H'G,

f, =g, +GH, g, f, =g, — WyuH, g,

Appendix C

Dimensionless quantities in the case of the plate subjected to surface forces:

N " H3C N 2n2H€C¢ R ?H*C J nHCd
Uy = ——U = Ol =—————0 = —4aj.
3 3iq 3 R Y 11 6(C — Ceg) L7 1, a Niq 1
Dimensionless quantities in the case of the plate subjected to surface electric charges:
2neC ~ eC eC - 1
[, — e 5 = d == —d .
N TFe M ¢ HGa)qb’ o FCﬁswan’ T
Auxiliary constants:
C—cCy k33 Cly + 20316’33C12 — C%1C33’ =k +Ci57
k33C33 + ¢33 Cyy
— — CuF —C?
F:€C33C13 0312(:33, N:CwC Cus ’ G:eC“C33 (/;13.
k33Cs3 + ¢35 Cu k33Cs3 + ¢35
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